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Juan Burgueño,*,‡ José Luis Araus,* Dan Makumbi,* Ravi P. Singh,*
Susanne Dreisigacker,* Jianbing Yan,* Vivi Arief,**

Marianne Banziger* and Hans-Joachim Braun*

*International Maize and Wheat Improvement Center (CIMMYT), 06600, México DF, México, †Department of Biostatistics,
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ABSTRACT

The availability of dense molecular markers has made possible the use of genomic selection (GS) for
plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This
article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum
aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental
conditions. The findings, based on extensive cross-validations, indicate that models including marker
information had higher predictive ability than pedigree-based models. In the wheat data set, and relative
to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%.
Correlation between observed and predictive values in the maize data set achieved values up to 0.79.
Estimates of marker effects were different across environmental conditions, indicating that genotype 3

environment interaction is an important component of genetic variability. These results indicate that GS
in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be
observed.

PEDIGREE-BASED prediction of genetic values
based on the additive infinitesimal model (Fisher

1918) has played a central role in genetic improvement
of complex traits in plants and animals. Animal breeders
have used this model for predicting breeding values
either in a mixed model (best linear unbiased pre-
diction, BLUP) (Henderson 1984) or in a Bayesian
framework (Gianola and Fernando 1986). More
recently, plant breeders have incorporated pedigree
information into linear mixed models for predicting
breeding values (Crossa et al. 2006, 2007; Oakey et al.
2006; Burgueño et al. 2007; Piepho et al. 2007).

The availability of thousands of genome-wide molecular
markers has made possible the use of genomic selection
(GS) for prediction of genetic values (Meuwissen et al.
2001) in plants (e.g., Bernardo and Yu 2007; Piepho 2009;
Jannink et al. 2010) and animals (Gonzalez-Recio et al.
2008; VanRaden et al. 2008; Hayes et al. 2009; de los

Campos et al. 2009a). Implementing GS poses several
statistical and computational challenges, such as how
models can cope with the curse of dimensionality, co-
linearity between markers, or the complexity of quantitative
traits. Parametric (e.g., Meuwissen et al. 2001) and semi-
parametric (e.g., Gianola et al. 2006; Gianola and van

Kaam 2008) methods address these problems differently.
In standard genetic models, phenotypic outcomes, yi

i ¼ 1; . . . ; nð Þ, are viewed as the sum of a genetic value,
g i , and a model residual, ei ; that is, yi ¼ g i 1 ei . In
parametric models for GS, g i is described as a regression
on marker covariates xij ( j ¼ 1, . . . , p molecular
markers) of the form g i ¼

Pp
j¼1 xij bj , such that

yi ¼
Xp

j¼1

xijbj 1 ei

(or y ¼ Xb 1 e, in matrix notation), where bj is the
regression of yi on the jth marker covariate xij .

Estimation of b via multiple regression by ordinary
least squares (OLS) is not feasible when p . n. A com-
monly used alternative is to estimate marker effects
jointly using penalized methods such as ridge regression
(Hoerl and Kennard 1970) or the Least Absolute
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Shrinkage and Selection Operator (LASSO) (Tibshirani

1996) or their Bayesian counterpart. This approach
yields greater accuracy of estimated genetic values and
can be coupled with geostatistical techniques com-
monly used in plant breeding to model multienviron-
ments trials (Piepho 2009).

In ridge regression (or its Bayesian counterpart) the
extent of shrinkage is homogeneous across markers,
which may not be appropriate if some markers are located
in regions that are not associated with genetic variance,
while markers in other regions may be linked to QTL
(Goddard and Hayes 2007). To overcome this limita-
tion, many authors have proposed methods that use
marker-specific shrinkage. In a Bayesian setting, this can
be implemented using priors of marker effects that are
mixtures of scaled-normal densities. Examples of this are
methods Bayes A and Bayes B of Meuwissen et al. (2001)
and the Bayesian LASSO of Park and Casella (2008).

An alternative to parametric regressions is to use
semiparametric methods such as reproducing kernel
Hilbert spaces (RKHS) regression (Gianola and van

Kaam 2008). The Bayesian RKHS regression regards ge-
netic values as random variables coming from a Gaussian
process centered at zero and with a (co)variance structure
that is proportional to a kernel matrix K (de los

Campos et al. 2009b); that is, Cov g i ; g j

� �
}K xi ; xj

� �
,

where xi , xj are vectors of marker genotypes for the
ith and jth individuals, respectively, and K :; :ð Þ is a
positive definite function evaluated in marker geno-
types. In a finite-dimensional setting this amounts to
modeling the vector of genetic values, g ¼ g if g, as
multivariate normal; that is, g�N

�
0;Ks2

g

�
where s2

g is
a variance parameter. One of the most attractive features
of RKHS regression is that the methodology can be used
with almost any information set (e.g., covariates, strings,
images, graphs). A second advantage is that with RKHS
the model is represented in terms of n unknowns, which
gives RKHS a great computational advantage relative to
some parametric methods, especially when p ? n.

This study presents an evaluation of several methods
for GS, using two extensive data sets. One contains
phenotypic records of a series of wheat trials and
recently generated genomic data. The other data set
pertains to international maize trials in which different
traits were measured in maize lines evaluated under
severe drought and well-watered conditions.

MATERIALS AND METHODS

Experimental data: Two distinct data sets were used: the first
one comprises information from a collection of 599 historical
CIMMYT wheat lines, and the second one includes informa-
tion on 300 CIMMYT maize lines.

Wheat data set: This data set includes 599 wheat lines
developed by the CIMMYT Global Wheat Breeding program.
Environments were grouped into four target sets of environ-
ments (E1–E4). The trait was grain yield (GY). Hereinafter we
refer to this data set as wheat-grain yield (W-GY). A pedigree

was used for deriving the additive relationship matrix A among
the 599 lines, as described in http://cropwiki.irri.org/icis/
index.php/TDM_GMS_Browse (McLaren et al. 2005). The
entries of this matrix equal twice the kinship coefficient (or
coefficient of parentage) between pairs of lines.

Wheat lines were genotyped using 1447 Diversity Array
Technology markers (hereinafter generically referred to as
markers) generated by Triticarte Pty. Ltd. (Canberra, Aus-
tralia; http://www.triticarte.com.au). These markers may take
on two values, denoted by their presence (1) or absence (0). In
this data set, the overall mean frequency of the allele coded as
1 was 0.561, with a minimum of 0.008 and a maximum of 0.987.
Markers with allele frequency ,0.05 or .0.95 were removed.
Missing genotypes were imputed using samples from the
marginal distribution of marker genotypes, that is, xij �
Bernoulli p̂j

� �
, where p̂j is the estimated allele frequency

computed from the nonmissing genotypes. After edition,
1279 markers were retained.

Maize data set: The maize data set is from the Drought
Tolerance Maize for Africa project of CIMMYT’s Global Maize
Program. The original data set included 300 tropical lines
genotyped with 1148 single-nucleotide polymorphisms (here-
inafter generically referred to as markers). For each marker,
the allele with lowest frequency was coded as one.

No pedigree was available for these data. Traits analyzed
for this study were GY, female flowering (FFL) (or days to
silking), male flowering (MFL) (or days to anthesis), and the
anthesis-silking interval (ASI), each evaluated under severe
drought stress (SS) and well-watered (WW) conditions.
Hereinafter we refer to these data sets as maize-grain yield
(M-GY) and maize-flowering (M-F), respectively. The num-
ber of lines in the M-F data set was 284, whereas 264 lines were
available in M-GY. The average minor allele frequency in
these data sets was 0.20. After editing (with the same
procedures as those described above), the numbers of
markers available for analysis were 1148 and 1135 in M-F
and M-GY, respectively.

Statistical models: This study evaluated several models for
GS that differ depending on the type of information used for
constructing predictions (pedigree, markers, or both) and on
how molecular markers were incorporated into the model
(parametric vs. semiparametric). All the unknowns in the
model were trait–environment specific. Consequently, sepa-
rate models were fitted to each trait–environment combina-
tion. For ease of presentation, models are described for a
generic trait–environment.

Likelihood function: In all models, phenotypic records were
described as

yi ¼ m 1 g i 1 ei

where yi ¼ n�1
i

P
k yik is the average performance of the ith

line, ni is the number of replicates used for computing the
mean value of the ith genotype, m is an intercept, g i is the
genetic value of the ith genotype, and ei is a model residual. In
all environments, the response variable was standardized to a
sample variance equal to one. The joint distribution of model
residuals was p eð Þ ¼

Q
n
i¼1 N ðei j 0; s2

e=niÞ. With this assump-
tion, the likelihood function becomes

p y

����m; g; s2
e

� �
¼
Yn

i¼1

N yi

����m 1 g i ;
s2

e

ni

� �
: ð1Þ

Models differed on how pedigree and molecular marker
information was included in g i .

Standard infinitesimal model: In this model, denoted as
pedigree (P), g i ¼ ui and pðu js2

uÞ ¼ N ðu j0;As2
uÞ, where A is

the additive relationship matrix computed from the pedi-
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gree and s2
u is the infinitesimal additive genetic variance.

Following standard assumptions, the joint prior of model
unknowns in P was

p
�
m;u;s2

e ;s
2
u jd:f :e; Se;d:f :u ; Su

�
}N
�
u j 0;As2

u

�
x�2
�
s2

e jd:f :e; Se

�
x�2
�
s2

u jd:f :u; Su

�
; ð2aÞ

where x�2ðs:2jd:f ::; S :Þ are scaled inverse chi-square priors
assigned to the variance parameters. The prior scale and degrees
of freedom parameters were set to S : ¼ 1 and d:f :: ¼ 4, re-
spectively. This prior has finite variance and an expectation of
0.5. Combining (1) and (2a), the joint posterior density of P is

p
�
m;u;s2

e ;s
2
u j y;H

�
}
Yn

i¼1

N

�
yi jm 1 ui ;

s2
e

ni

�

3 N
�
u j 0;As2

u

�
x�2
�
s2

e jd:f :e; Se

�
x�2
�
s2

u jd:f :u ; Su

�
: ð2bÞ

Above, H denotes all hyperparameters indexing the prior
distribution. This posterior distribution does not have a closed
form; however, samples from the above model can be obtained
from a Gibbs sampler, as described, for example, in Sorensen

and Gianola (2002). No pedigree data were available for the
maize data set; therefore, this model was only in the wheat data set.

Parametric genomic models: For parametric regression, we use
the Bayesian LASSO (BL) (Park and Casella 2008), ex-
tended by inclusion of an infinitesimal effect, as described in
de los Campos et al. (2009a). In this model,

yi ¼ m 1
Xp

j¼1

xij bj 1 ui 1 ei ;

and the joint prior density of the model unknowns (upon
assigning a flat prior to m) is

p
�
m;u;b; l2;s2

e ;s
2
u j r ; d;d:f :e; Se;d:f :u ; Su

�
}N
�
u j 0;As2

u

� Yp

j¼1

N
�
bj j 0;s2

et2
j

�( )

3
Yp

j¼1

Exp
�
t2

j j l2
�( )

G
�
l2 j r ; d

�
x�2
�
s2

e jd:f :e; Se

�
3 x�2

�
s2

u jd:f :u; Su

�
: ð3aÞ

Above, marker effects are assigned independent Gaussian
priors with marker-specific variances (s2

et2
j ). At the next level

of the hierarchical model, the t2
j ’s are assigned iid exponential

priors ðExp½t2
j j l2�Þ. At a deeper level of the hierarchy l2 is

assigned a Gamma prior with rate (d) and shape (r), which in
this study were set to d ¼ 1 3 10�4 and r ¼ 0:6, respectively.
Finally, independent scaled inverse chi-square priors were
assigned to the variance parameters, and the scale and degree
of freedom parameters were set to Su ¼ Se ¼ 1 and
d:f :e ¼ d:f :u ¼ 4, respectively. The above model is referred to
as pedigrees plus markers BL (PM)-BL.

The effect of the prior choice for l2 in the BL has been
addressed in de los Campos et al. (2009a). These authors
studied the influence of the choice of hyperparameters for l2

on inference of several items and concluded that, even when the
prior for l2 had influence on inferences about this unknown,
model goodness-of-fit and estimates of genetic values were
robust with respect to the choice of p l2ð Þ. Figure A1 (appendix

a) depicts the prior density of l, pðl j r ; dÞ ¼ 2Gðl2j r ; dÞl,
corresponding to the hyperparameter values used in this
study; this prior gave a high density over a wide range of

values of l. Also, as shown later, the posterior mean of l
changed between traits and data sets, indicating that Bayes-
ian learning took place.

Combining the assumptions of the likelihood (1) and the
prior described in (3a), the joint posterior density is

p
�
m;u;b; l2;s2

e ;s
2
u j y;H

�
}
Yn

i¼1

N
�
yi jm 1

Xp

j¼1

xij bj 1 ui ;
s2

e

ni

�( )
N
�
u j 0;As2

u

�

3
Yp

j¼1

N
�
bj j 0;s2

et2
j

�( ) Yp

j¼1

Exp
�
t2

j j l2
�( )

3 G
�
l2 j r ; d

�
x�2
�
s2

e jd:f :e; Se

�
x�2
�
s2

u jd:f :u; Su

�
: ð3bÞ

This density does not have a closed form; however, samples
from the above model can be obtained from a Gibbs sampler,
as described in de los Campos et al. (2009a). Inferences for
the regularization parameter are presented in terms of l,
which were obtained by taking the positive square root of
samples from the posterior distribution of l2.

A marker-based model, M-BL, can be obtained from (3b) by
setting u ¼ 0, which implies g i ¼

Pp
j¼1 xij bj .

BLUP using marker genotypes: Prediction of genetic values
using BLUP (e.g., Robinson 1991) of marker effects is
commonly used in GS (e.g., Meuwissen et al. 2001; Bernardo

and Yu 2007). We include this method as a reference. BLUP
estimates are derived from the model

y ¼ m 1 Xb 1 e

p
�
e;b js2

e ;s
2
b

�
¼ N

�
e j 0;D

�
N
�
b j 0; Is2

b

�
;

where D ¼ s2
eDiag n�1

1 ; . . . ; n�1
n

� �
. From these assumptions,

the BLUP estimates of marker effects are

E
�
b j y;m;s2

e ;s
2
b

�
¼ Covðb; y9ÞVarðyÞ�1ðy � 1mÞ
¼ Covðb; 19m 1 b9X9 1 e9ÞVarð1m 1 Xb 1 eÞ�1ðy � 1mÞ

¼ s2
bX9 s2

bXX9 1 s2
eD

h i�1
ðy � 1mÞ:

Computation of BLUPs requires knowledge of m;s2
e ;s

2
b

n o
.

To this end, we fitted a random-effects model

yik ¼ m 1 g i 1 eik ;

where yik is the observed phenotype of the kth replicate of the
ith genotype (i ¼ 1; . . . ; n; k ¼ 1; . . . ; ni), g i �iid N ð0;s2

g Þ
and eik �iid N 0;s2

e

� �
. This model yields estimates of

m;s2
e ;s

2
g

n o
, where Var g ið Þ ¼ s2

g . An estimate of s2
b was

obtained by plugging the estimate of s2
g in s2

b ¼
s2

g=
Pp

j 2uj 1� uj

� �
� s2

g=2p�u 1� �uð Þ (e.g., Meuwissen et al.
2001; VanRaden 2007), where uj is the estimated allelic
frequency of the jth marker, and �u is the average (across
markers) allele frequency, which in our case was estimated
from the marker data.

Semiparametric models (RKHS): In RKHS, genetic values are
viewed as a Gaussian process. When markers and a pedigree
are available, genetic values can be modeled as the sum of two
components

g i ¼ ui 1 f i ;

where ui is as before and f i is a Gaussian process with a
(co)variance function proportional to the evaluations of a
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reproducing kernel, K xi ; xj

� �
, evaluated in marker genotypes;

here xi and xj are vectors of marker genotype codes for the ith
and jth individuals, respectively. The joint prior distribution of
u ¼ uif g, f ¼ f if g, and the associated variance parameters m,
s2

e , s2
u , and s2

f , are as follows:

p
�
m;u; f;s2

e ;s
2
u ;s

2
f jd:f :e; Se;d:f :u; Su;d:f :f ; Sf

�
}N
�
u j 0;As2

u

�
N
�
f j 0;Ks2

f

�
3 x�2

�
s2

e jd:f :e; Se

�
x�2
�
s2

u jd:f :u; Su

�
x�2
�
s2

f jd:f :f ; Sf

�
:

ð4aÞ

Above, K is a kernel matrix, which is symmetric and positive
definite. In this study, the entries of these matrices were the
evaluations of a Gaussian kernel, K xi ; xj

� �
¼ exp �u 3 dij

� �
,

where dij ¼
Pp

k¼1 xik � xjk

� �2
is a squared-Euclidean distance,

and u is a bandwidth parameter that controls how fast the
prior correlation drops as lines get farther apart in the sense of
dij . The values of the distance function depend on p, on allele
frequencies, and on how related the lines are. The choice of
the bandwidth parameter should consider the observed
distribution of dij to avoid situations where K is either a matrix
full of ones or an identity matrix. In this study we chose
u ¼ 2q�1

0:5, where q0:5 is the sample median of dij . This choice
yields exp �2ð Þ � 0:13 at the median distance. Higher (lower)
prior correlation is assigned to pairs of lines that are closer
(farther apart) than q0:5, as measured by dij. Addressing the
optimal choice of bandwidth parameter is not within the scope
of this study; see de los Campos et al. (2010). The scale and
degree of freedom parameters of the prior described in (4a)
were Se ¼ Su ¼ Sf ¼ 1 and d:f :e ¼ d:f :u ¼ d:f :f ¼ 4.

Combining the assumptions in (1) and (4a), the joint
posterior density of this marker and pedigree RKHS model
(PM-RKHS) is

p
�
m;u; f;s2

e ;s
2
u ;s

2
f j y;H

�
}
Yn

i¼1

N
�
yi jm 1 f i 1 ui ;

s2
e

ni

�( )

3 N
�
u j 0;As2

u

�
N
�
f j 0;Ks2

f

�
3 x�2

�
s2

e jd:f :e; Se

�
x�2
�
s2

u jd:f :u; Su

�
x�2
�
s2

f jd:f :f ; Sf

�
:

ð4bÞ

This density does not possess a closed form; however,
samples from this posterior distribution can be obtained using
a slightly modified version of the Gibbs sampler that imple-
ments the pedigree model in (2a).

In the RKHS regression of (4b), the variances of ui and f i

can gauge the relative contribution of each of these compo-
nents to the conditional expectation function. From (4a),
Var uið Þ ¼ a i; ið Þs2

u , where a i; ið Þ is the ith diagonal element of
matrix A, and Var f ið Þ ¼ K xi ; xið Þs2

f . Here, K xi ; xið Þ is a
standardized kernel, with K xi ; xið Þ ¼ 1. This does not occur
in a i; ið Þ; here a i; ið Þ ¼ 1 1 F i , where F i is the coefficient of
inbreeding of the ith individual. In the wheat population, the
average value of a i; ið Þ was 1.98.

As with parametric methods, a marker-based model,
M-RKHS, can be obtained as a particular case of (4b), with
u ¼ 0, which implies g i ¼ f i .

Data analysis: Full-data analysis: Models were first fitted
using all lines in the data set, and inferences for each fit were
based on 30,000 samples (obtained after discarding 5000
samples as burn-in). Convergence was checked by inspecting
trace plots of variance parameters.

Cross-validation: Prediction of performance of lines whose
phenotypes are yet to be observed is a central problem in plant
breeding. Such prediction can be used, for example, to decide
which of the newly generated lines will be evaluated in field
trials. Cross-validation (CV) methods were used to evaluate the
ability of a model to predict future outcomes. To this end, data
were divided into 10 folds; this was done by using an index
variable, I i 2 1; . . . ; 10f g, i ¼ 1, . . . , n, that randomly assigns
observations to 10 disjoint folds, F j ¼ i : I i ¼ jf g, j ¼ 1, . . . ,
10. CV predictions of the observations in the first fold,
F 1 ¼ i : I i ¼ 1f g, are obtained by omitting phenotypic data
on all lines in the first fold. This yields CV predictions of lines
in the first fold, that is, ŷi : I i ¼ 1f g. Repeating this exercise for
the second, third, . . . , 10th folds yields a whole set of CV
predictions ŷif gn

i¼1 that can be compared with actual observa-
tions yif gn

i¼1 to assess predictive ability.
Principal component analysis of estimated marker ef-

fects: Parametric models such as the BL yield estimates of
marker effects, which, in our case, are environment specific.
These estimates can be used to assess and visualize genetic
effect 3 environment interaction. Biplots from principal
component analysis of the matrix of estimated marker effects
in each trait–environment combination were obtained. The
methodology is briefly explained in appendix b. Use of biplots
to assess genetic effect 3 environment interaction is further
described in Cornelius et al. (2001).

RESULTS

This section begins by presenting estimates of vari-
ance parameters and of the regularization parameters
of BL and RKHS that were obtained when models were
fitted using all available records (i.e., full data analysis).
Next, results from the principal components analysis of
estimated marker effects (also obtained from the full
data analysis) for the W-GY data set are given (results for
the maize data set are provided in appendix c). Sub-
sequently, estimates of measures of predictive ability
obtained from cross-validation are presented.

Variance and regularization parameters: Tables 1 and
2 give the estimates of posterior means of variance
parameters and of l in the BL. The posterior mean of
the residual variance (s2

e) can be used to assess model
goodness-of-fit. Since the response variable was stan-
dardized within trait–environment combinations, the
estimate of s2

e gives an indication of the fraction of the
phenotypic variance that can be attributable to model
residuals. In the GY-W data set (Table 1), RKHS models
fitted data markedly better (smaller s2

e) than P, M-BL, or
PM-BL. Model M-BL had a posterior mean of residual
variance that was either similar to or slightly larger than
that of P, while PM-BL fitted the data better than P.
Results from the maize data sets (Table 2) were mixed:
M-BL fitted the data much better than M-RKHS for FFL
and MFL, regardless of environmental conditions, but
the opposite was observed (i.e., M-RKHS fitted data
better than M-BL) for ASI and GY (Table 2).

For the W-GY data set, the posterior means of s2
u in

PM-BL and PM-RKHS were smaller than that obtained in
P (Table 1). This indicates that the inclusion of markers
reduces the relative contribution of the regression on
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the pedigree, ui . In PM-RKHS, the ratio s2
f =a i; ið Þs2

u ,
evaluated at a i; ið Þ ¼ 1:98 and at the posterior mean of s2

f

and s2
u , was always .2 (Table 1), indicating that in PM-

RKHS models, the regression on the markers made a
much more important contribution to the conditional
expectation than the regression on the pedigree.

Marker effects: Estimated marker effects obtained
from PM-BL are provided in supporting information,
Table S1, Table S2, and Table S3.

The multivariate analysis of estimated marker effects
for the W-GY data set indicated that the first two
principal components explained 74% of the total
variability in estimated marker effects (Figure 1).
Sample correlations between phenotypes in the four
environments (E) showed that E2 and E3 had a
correlation of 0.661, whereas E2 and E4 and E3 and
E4 had correlations of 0.411 and 0.388, respectively. The
correlation patterns of estimated marker effects were
similar, but the strength of the association was slightly
weaker. For instance, the correlations between estimates
of marker effects were 0.633 (E2–E3), 0.388 (E2–E4),
and 0.384 (E3–E4). Correlations between E1 and the
other environments were low and negative for pheno-
typic and estimated marker effect data.

The variance of estimated marker effects was slightly
smaller in E4; this can be inferred by the length of the
corresponding vector in Figure 1. The vast majority of
the estimated effects are located around the center of
Figure 1 (i.e., estimated effects were small, in absolute
value), which reflects shrinkage of the BL model.
However, some markers had estimated effects that were
large in absolute value; some of those markers are
identified by their name in Figure 1, and the estimated
effects are given in Table S1. An approximation to the
estimated effect of the presence of a marker in GY for a
given environment can be obtained by orthogonal
projection of the marker effect displayed in Figure 1
on the vector of the corresponding environment. To
illustrate this, consider E1, where the presence of
markers wPt.9256, wPt.6047, and wPt.3904 is expected
to increase GY (Figure 1); in contrast, the presence of
markers wPt.3462, wPt.3922, and wPt.4988 (located in
the opposite direction of E1) is expected to reduce GY.

The multivariate analysis of estimated marker effects
allows identifying which markers contribute to positive/
negative genetic correlation between environments.
Markers whose presence is expected to increase or
decrease GY across environments can be viewed as

TABLE 1

Estimates of posterior mean of parameters s2
e , s2

u , s2
f , and l from the full-data analysis of grain yield

(GY) of 599 wheat lines genotyped with 1279 molecular markers

Trait–environment Modela

Parameter

s2
e

b s2
u s2

f l

GY-E1 P 0.562 0.286 — —
M-RKHS 0.272 — 0.825 —
PM-RKHS 0.197 0.108 0.746 —
M-BL 0.554 — — 20.389
PM-BL 0.434 0.141 — 20.747

GY-E2 P 0.581 0.248 — —
M-RKHS 0.394 — 0.720 —
PM-RKHS 0.364 0.115 0.531 —
M-BL 0.574 — — 21.994
PM-BL 0.501 0.117 — 24.927

GY-E3 P 0.492 0.342 — —
M-RKHS 0.317 — 0.888 —
PM-RKHS 0.283 0.148 0.625 —
M-BL 0.667 — — 26.924
PM-BL 0.479 0.237 — 37.423

GY-E4 P 0.517 0.300 — —
M-RKHS 0.330 — 0.771 —
PM-RKHS 0.298 0.118 0.594 —
M-BL 0.612 — — 24.725
PM-BL 0.471 0.169 — 27.503

Five models were fitted to each trait (GY) and environment (E1, E2, E3, and E4) combination.
a Models were pedigree model (P), molecular marker model using reproducing kernel Hilbert

space (M-RKHS) regression, pedigree plus molecular marker model using reproducing kernel Hilbert
space regression (PM-RKHS), molecular marker regression model using the Bayesian LASSO (M-BL),
and pedigree plus the molecular marker model regression using the Bayesian LASSO (PM-BL). Es-
timates of posterior standard deviations (across traits and models) ranged from 0.041, 0.028,
0.093, and 2.73 to 0.057, 0.060, 0.132, and 11.73 for s2

e, s2
u , s2

f , and l, respectively.
b Phenotypes were standardized to a unit variance within environment.
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contributing to positive genetic correlations in GY
between environments. Examples of this group are
markers wPt.9256, wPt.6047, and c.373879, whose pres-
ence increased GY in the four environments, and
wPt.3393, c.380591, and c.381717, whose presence de-
creased GY in all environments. However, some markers
act in an ‘‘antagonistic’’ fashion; that is, the presence of
a marker increases (decreases) GY in some environ-
ments and decreases (increases) GY in others.

Results from the multivariate analysis of marker
effects in the maize data sets (M-F and M-GY) were
similar to those observed in the wheat data set in regard
to the following: (1) the first two principal components
explained a large proportion (85.8%) of the observed
variability of estimated marker effects; (2) due to
shrinkage, most estimated marker effects clustered
around zero; and (3) although the overall correlation
patterns between estimated marker effects reflected the
type of association observed between phenotypes, it was
possible to identify subsets of markers that contributed
to positive genetic correlation and others that induced
negative genetic associations. A detailed discussion of
these results is given in appendix c.

Predictive ability: Tables 3 and 4 show the estimated
correlations between phenotypic outcomes and CV
predictions for W-GY, M-F, and M-GY data sets. Overall,
the values of these correlations, especially those ob-

tained with BL or RKHS methods, were large for all
models, data sets, and traits, indicating that genomic
selection can be effective for predicting the perfor-
mance of lines with yet-to-be observed phenotypes.
Predictive ability was different between models and data
sets: for W-GY correlations ranged from 0.355 to 0.608,
for M-F correlations varied from 0.464 to 0.79, and for
M-GY they ranged from 0.415 to 0.514.

Wheat data set: In the W-GY, correlations ranged from
0.355 (BLUP in E3) to 0.608 (PM-RKHS in E1) (Table 3),
and relative to the P model, the PM-RKHS model
produced the highest relative gain in CV correlation
in three of four environments. BLUP was outperformed
by BL and RKHS methods across environments. In these
data, PM models had better predictive ability than P
models, and the magnitude of the gain in predictive
ability attained by including markers in the model
varied from a modest 7.7% (PM-BL in GY-E3) to a very
important 35.7% (PM-RKHS in GY-E1) (Table 3). In
general, RKHS outperformed BL both in M and PM,
and BLUP outperformed P models in three of four
environments (all but E3); however, as stated, BLUP was
outperformed by BL and RKHS.

Maize flowering: In the M-F, correlations ranged from
0.464 (BLUP for MFL-SS) to 0.790 (M-BL for MFL-WW)
(Table 4). For these traits, BLUP was systematically
outperformed by BL and RKHS. Also for these traits,

TABLE 2

Estimates of posterior means of parameters s2
e , s2

f , and l from the full-data analysis of female
flowering time (FFL), male flowering time (MFL), the MFL to FFL interval (ASI) of 284 maize

genotypes and 1148 markers, and grain yield (GY) of 264 genotypes and 1135 markers

Trait–environment

Parameter

Modela s2
e

b s2
f l

MFL-WW M-RKHS 0.761 0.262 —
M-BL 0.315 — 28.2

MFL-SS M-RKHS 0.402 0.645 —
M-BL 0.169 — 18.6

FFL-WW M-RKHS 0.793 0.241 —
M-BL 0.323 — 28.4

FFL-SS M-RKHS 0.489 0.566 —
M-BL 0.179 — 18.9

ASI-WW M-RKHS 0.231 0.700 —
M-BL 0.467 — 41.8

ASI-SS M-RKHS 0.183 0.747 —
M-BL 0.370 — 32.9

GY-WW M-RKHS 0.252 0.725 —
GY-WW M-BL 0.369 — 31.069
GY-SS M-RKHS 0.212 0.836 —
GY-SS M-BL 0.431 — 33.365

Two models were fitted to each of the trait (FFL, MFL, ASI, and GY) and environment (SS, severe
stress; WW, well watered) combinations.

a Models were molecular marker (M) using reproducing kernel Hilbert space (M-RKHS) regression
and molecular marker (M) regression model using the Bayesian LASSO (M-BL). Estimates of poste-
rior standard deviations (across traits and models) ranged from 0.049, 0.096, and 4.014 to 0.124, 0.168,
and 8.619 for s2

e, s2
f , and l, respectively.

b Phenotypes were standardized to a unit variance within trait and environment.
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M-BL yielded better predictions than M-RKHS, with
relatively high correlation values that ranged from 0.774
to 0.790. However, for ASI under severe drought stress
and well-watered conditions, correlations were not as
strong as those found for the other flowering-time traits,
and M-RKHS outperformed M-BL, with correlation
values of 0.547 and 0.572, respectively (Table 4).

Maize grain yield: Predictive correlations in M-GY
(Table 4) were smaller than those obtained in flowering
traits, and the differences between methods were not
clear as in the M-F data set. Here, CV correlations
ranged from 0.415 (M-BL GY under drought stress) to
0.525 (M-BL GY well watered). These traits did not yield
a clear ranking of models: BL was best for GY under well-
watered conditions, and RKHS was best for GY under
drought stress. However, as stated, in M-GY the differ-
ences in predictive ability between models were not
large.

DISCUSSION

Several simulation studies (Bernardo and Yu 2007;
Wong and Bernardo 2008; Mayor and Bernardo

2009; Zhong et al. 2009) have reported important gains
in genetic progress associated with the use of GS in plant
breeding. Recently, Heffner et al. (2009) concluded that
the high correlation between true breeding values and
the genomic estimated breeding values found in several
simulation studies is sufficient for considering selection
based on molecular markers alone; however, evaluation
of these methods with real plant data is still very limited.

Empirical evaluation of GS: The results of this study
indicate that, even with a modest number of molecular
markers, models for GS can attain relatively high pre-
dictive ability for genetic values of traits of economic
interest in contrasting environmental conditions. These

findings are in agreement with simulation-based studies
such as those mentioned above and with empirical
evidence reported in animal breeding (e.g., Gonzalez-
Recio et al. 2008; VanRaden et al. 2008; Hayes et al. 2009;
Weigel et al. 2009).

Evaluation of predictive ability indicated that models
using marker and pedigree data jointly (PM) outper-
formed pedigree models (P) across traits and environ-
ments, regardless of the choice of model (BL, RKHS).
These results are consistent with those reported by
Crossa et al. (2010), who evaluated P, M, and PM models
using the BL and RKHS for grain yield in wheat (n ¼
170) and several disease traits in maize.

Despite the gains in predictive ability obtained with PM
models, our results suggest that there is room for
improving predictive ability even further. To illustrate
this, and as an exercise, let us assume that the model yi ¼
g i 1 ei holds, and consider as the best (unlikely) scenario
that CV predictions, ĝi;CV, are such that ĝi;CV ¼ g i . If so,
the maximum attainable correlation is Corðg i ; yiÞ ¼
ðs2

g 1 s2
eÞ
�ð1=2Þ

sg ¼ h, where h is the square root of the
heritability of the trait. Thus, if heritability is 0.5, then the
maximum correlation is 0.707. This will hold if only one
replicate is available; for data involving repeated meas-
ures, as was the case in this study, the maximum
correlation is Corðg i ; yiÞ ¼ ðs2

g 1 n�1
i s2

eÞ
�ð1=2Þ

sg . h.
CV correlations in this study ranged from 0.40 to 0.79;
these values are well below the theoretical maxima given
the heritability of the traits and the number of replicates
available. We therefore conclude that larger gains in
predictive ability can be expected (1) when more
markers are available or (2) by improving upon the
methods used to implement GS.

Choice of model: There are different ways of in-
corporating markers into models for GS. Here we
evaluated the BL, BLUP, and RKHS methods. BLUP

Figure 1.—Biplot of the first two principal
components (Comp. 1 and Comp. 2) of estimates
of marker effects on grain yield (GY) in wheat
evaluated in four environments (E1–E4). Marker
effects were obtained from a full-data analysis
and using a pedigree plus marker model (PM-
BL). Only the effects of 17 markers that are lo-
cated farthest from the center of the biplot were
identified with their corresponding marker’s
name (solid circles).
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and BL use parametric regression on marker covariates,
whereas RKHS is a semiparametric method. In general,
BL outperformed BLUP, which may be attributed to at
least two reasons: (1) similar to other methods for GS such
as methods Bayes A and Bayes B of Meuwissen et al.
(2001), BL performs marker-specific shrinkage of effects,
whereas BLUP penalizes all marker effects equally; and
(2) in BL, variance parameters and marker effects are
inferred jointly, whereas BLUP typically involves two steps
(a first one in which variance parameters are inferred and
a second one in which marker effects are estimated).

The comparison between BL and RKHS yielded mixed
results; this finding is in agreement with those of Zhong

et al. (2009), who evaluated different models in different
scenarios (mating systems) and did not find one method
that performed best across scenarios. For grain yield and
anthesis-silking interval, RKHS methods performed ei-
ther similarly or better than the BL; however, for female
and male flowering traits in maize, BL outperformed
RKHS markedly. The BL is an additive model, whereas
RKHS may be able to capture complex epistatic inter-
actions better (e.g., Gianola and van Kaam 2008).
Therefore, one could expect the BL to perform well in
traits where additive effects play a central role and RKHS
to perform better in traits where epitasis is more relevant.
Buckler et al. (2009) provide evidence suggesting that
female and male flowering traits in maize are, for the most
part, additive traits. The good performance of the BL
observed in this study for those traits is consistent with this
finding.

Marker vs. pedigree plus marker models: In general,
PM models in W-GY had a slight but consistent superiority
in all four environments for predictive ability as compared

to the M model; this is in agreement with previous
findings (e.g., de los Campos et al. 2009a). The advantage
of considering pedigree and markers jointly is small

TABLE 3

Cross-validation (CV) correlation between predicted and observed phenotypes, obtained in a 10-fold
CV conducted for grain yield (GY) records of 599 wheat lines genotyped with 1279 molecular markers

Trait–environment

Modela

P M-RKHS PM-RKHS M-BL PM-BL BLUPb

Correlation
GY-E1 0.448 0.601 0.608 0.518 0.542 0.480
GY-E2 0.417 0.494 0.497 0.493 0.501 0.488
GY-E3 0.417 0.445 0.478 0.403 0.449 0.355
GY-E4 0.449 0.524 0.524 0.457 0.495 0.464

% change (relative to P)
GY-E1 — 34.2 35.7 15.6 21.0 7.1
GY-E2 — 18.5 19.2 18.2 20.1 17.0
GY-E3 — 6.7 14.6 �3.4 7.7 �14.9
GY-E4 — 16.7 16.7 1.8 10.2 3.3

Six models were fitted to GY measured in four environments (E1, E2, E3, and E4).
a Models were pedigree model (P), molecular marker model using reproducing kernel Hilbert

space (M-RKHS) regression, pedigree plus molecular marker model using reproducing kernel Hilbert
space regression (PM-RKHS), molecular marker regression model using the Bayesian LASSO (M-BL),
pedigree plus molecular marker model regression using the Bayesian LASSO (PM-BL), and best linear
unbiased prediction (BLUP) using marker genotypes.

b Values of genetic variances used to compute BLUP ranged from 0.8065 to 0.9141.

TABLE 4

Cross-validation (CV) correlation between predicted and ob-
served phenotypes, obtained in a 10-fold CV conducted
for female flowering (FFL), male flowering (MFL), the

MFL to FFL interval (ASI) of 284 maize lines genotyped
for 1148 markers, and grain yield (GY) of 264 maize

lines genotyped for 1135 markers

Trait–environment

Modela

M-RKHS M-BL BLUPb

MFL-WW 0.607 0.790 —c

MFL-SS 0.674 0.778 0.464
FFL-WW 0.588 0.781 —c

FFL-SS 0.648 0.774 0.521
ASI-WW 0.547 0.513 0.469
ASI-SS 0.572 0.517 0.481
GY-WW 0.514 0.525 0.515
GY-SS 0.453 0.415 0.442

Three models were fitted to each trait (FFL, MFL, ASI, and
GY) and environment (SS, severe drought stress; WW, well wa-
tered) combination.

a Models were molecular marker (M) using reproducing
kernel Hilbert space (M-RKHS) regression, molecular marker
(M) regression model using the Bayesian LASSO (M-BL), and
best linear unbiased predictor (BLUP) using marker genotypes.

b Values of genetic variances used to compute BLUP ranged
from 0.000 to 0.319 for flowering, and from 0.017 to 0.206 for
grain yield.

c BLUPs were not computed because the estimated genetic
variances were negligible.
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because there is some redundancy between regression on
the pedigree and regression on markers (e.g., Habier et al.
2009). It is reasonable to expect that as the number of
molecular markers increases, the relative contribution of
pedigree information will decrease.

Assessment of genetic effect 3 environment interac-
tion with estimates of marker effects: Parametric meth-
ods such as M-BL, PM-BL, or BLUP provide estimates of
‘‘marker effects’’ that may be used to gain a better
understanding of the underlying architecture of the
traits. The results obtained here with W-GY are consis-
tent with those reported by Crossa et al. (2007) and
indicate that markers such as wPt.6047, wPt.3393,
wPt3462, and wPt.3904 (located in chromosome 3B,
the long arm of chromosome 7A, chromosome 1A, and
the short arm of chromosome 1A, respectively) are
indeed associated with GY in wheat.

Estimates of marker effects can be also used to gain
insights on the sources of genetic effect 3 environment
interaction. Here, we used principal component analy-
sis of estimates of marker effects as a way of assessing
sources of marker effect 3 environment interaction.
Overall, the correlation patterns of estimated marker
effects were similar to those observed at the phenotypic
level; however, in all trait–environment combinations it
was possible to detect markers that made contributions
to positive or negative genetic correlation. For example,
for the M-F data set, results indicate important molec-
ular marker effect 3 environment interactions, which
translate into genotype 3 environment interaction. In
this respect, our results are different from those of
Buckler et al. (2009), who reported low levels of
genotype 3 environment interaction for the same traits.

Conclusion: Results of this study showed that models
including markers or markers and pedigrees yield rela-
tively high correlations between predicted and observed
phenotypic outcomes. The superiority of models using
markers or markers and pedigree was clear regardless of
the choice of method (BL, RKHS). Moreover, we did not
find a method (BL or RKHS) that was consistently
superior across environments and traits. Differences in
the underlying genetic architecture of the traits may well
explain these results.

The relatively promising results from RKHS indicate
that designing methods to address the problem of kernel
choice is a relevant area of research in the context of
semiparametric models for GS. In this study, separate
models were fitted to each trait–environment combina-
tion. Multiple-environment (multiple-trait) models are
ubiquitous in plant and animal breeding, and the de-
velopment and evaluation of multiple-environment mod-
els for GS where marker effects and genomic values for
several traits are estimated jointly appears to be a relevant
area of research.

The Bayesian LASSO was fitted using the BLR
package which is available in R (R Development Core

Team 2010; G. de los Campos and P. Pérez) and

described in Pérez et al. (2010). The wheat and maize
experimental data, and other computer programs
written in R for fitting the RKHS models using the
Gibbs sampler described in this article, are available in
File S1.
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APPENDIX A: APPENDIX B: MULTIVARIATE ANALYSIS
OF ESTIMATED MARKER EFFECTS

Consider a matrix of estimated molecular marker
effects, B̂p 3 q ¼ b̂1; . . . ; b̂q

	 

¼ b̂jk

� �
, whose columns,

b̂k , k ¼ 1; . . . ; q, are estimates of the effects of p markers
in q different environments. The singular value decom-
position of this matrix is B̂ ¼ UDV9, where Up 3 q ¼
a1; . . . ; aq

	 

¼ ajk

� �
and Vq 3 q ¼ g1; . . . ; gq

	 

¼ gklf g

are ortho-normal matrices that span the row (marker) and
column (environment) spaces of B̂, respectively, and
Dq 3 q is a diagonal matrix whose nonnull entries are the
singular values of B̂; that is, D ¼ Diag lkf g.

The biplot is constructed using the first two principal
components axis of B̂ (a1, a2 and g1, g2). Points in the
biplot are the marker effects projected in the first two
components and are displayed using the coordinates
provided by a1 and a2. The ‘‘environmental effects’’ are
displayed as vectors whose coordinates are given by g1

and g2. The length of the vectors approximates the
variance accounted for by the specific molecular marker
and environmental effect. Molecular markers repre-
sented in the same direction as the environments had
positive effects on those environments, whereas molec-
ular markers located in the opposite direction to the
environmental vectors had negative effects on those
environments. The cosine of the angle between the

Figure A1.—Prior density of the regularization parameter,
p(l), used to fit the Bayesian LASSO.
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vectors representing a pair of environments (or molec-
ular marker effect) approximates the correlation of the
two environments (or molecular marker), with an angle
of zero indicating a correlation of 11, an angle of 90�
(or �90�) a correlation of 0, and an angle of 180� a
correlation of �1.

APPENDIX C

Marker effects for maize flowering data: The display
of the first two component axes (accounting for 85.79%
of the total variability in estimated marker effects) on
estimated effects of the markers in the six trait–
environment combinations (MFL-SS, MFL-WW, FFL-
SS, FFL-WW, ASI-SS, and ASI-WW) of the M-F data set
obtained from the BL model is depicted in Figure C1.
Clearly the two groups of trait–environment combina-
tions are dominated more by the trait (ASI vs. FFL and
MFL) and less by the environmental condition (SS and
WW). Phenotypic outcomes and estimates of marker
effects for ASI showed relatively small correlations with
those of FFL and MFL. Phenotypic correlations between
MFL in WW and SS, ASI in WW and SS, and FFL in SS and
WW were positive and high, ranging from 0.686 to 0.728.
Correlations ASI-MFL and ASI-FFL at the different water
regimes (SS and WW) ranged from �0.123 to 0.446.

Interpretation of the estimated marker effect on
these traits should be different from that for grain yield.
For FFL and MFL, the favorable allele is the one whose
estimated effect is negative (i.e., it decreases FFL and
MFL), whereas for ASI, selection seeks to set this trait as
close to zero as possible. Alleles coded as 1 of markers

whose estimated effects are located on the left side and
in the top left corner of Figure C1 (i.e., PZA03551.1,
PZA03578.1, PZA03222.1, PZA03385.1, PZB01201.1,
and PZB00118.2) increase FFL, MFL, and ASI (they all
have positive effects in all trait–environment combina-
tions), whereas those markers located on the opposite side
of the biplot (bottom right corner) (i.e., PZA02587.16,
PZA00236.7, PZB0255.1, and PZA00676.2) decrease the
value of FFL, MFL, and ASI. Those markers whose
presence is expected to increase or decrease traits across
environments can be viewed as contributing to positive
genetic correlations in FFL, MFL, and ASI between
environments.

Despite the high heritability (between 0.74 and 0.87)
found for flowering time and ASI in this maize trial,
results show substantial interaction between molecular
marker effects and environment. The biplot in Figure C1
shows markers that had very contrasting effects across
environments. For example, the minor alleles of markers
whose estimated effects are located in the top right corner
of the biplot (PZA03592.3, PZB01077.3, and PZB02076.1)
increase the anthesis-silking interval under drought and
well-watered conditions, but decrease days to male and
female flowering. In contrast, the minor alleles of markers
whose estimated effects are located in the opposite
quadrant of the biplot (bottom left corner)
(PZB00592.1, PHM13183.12, and PZB01964.5) showed
a complete rank reversal with respect to the effects of
markers PZA03592.3, PZB01077.3, and PZB01077.3 on
those trait–environment combinations, i.e., a decrease in
ASI under SS and WW and an increase in male and female
flowering times.

Figure C1.—Biplot of the first two principal
components (Comp. 1 and Comp. 2) of estimates
of marker effects for female flowering (FFL),
male flowering (MFL), and the FFL-MFL interval
(ASI) evaluated under well-watered (WW) and
drought-stress (SS) conditions. Estimates of
marker effects were obtained from a full-data
analysis and using a pedigree plus marker model
(PM-BL). Only the effects of the 19 markers that
are located farthest from the center of the biplot
were identified with their corresponding
marker’s name (solid circles).
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The estimated effects used to perform the multivariate
analysis included in this section are provided in Table S2.

Marker effects for maize grain yield under stress and
well-watered environments: Since only two trait–
environment combinations (GY-WW and GY-SS) are
available for the M-GY data set, no principal compo-
nent analysis was performed. The phenotypic corre-
lations between GY-WW and GY-SS (0.260), as well as

the correlations between the estimated marker effects
for grain yield (0.251), were low. Also, none of the 10
markers with the largest/smallest estimated effects in
GY-WW was among those with the largest/smallest
effects under GY-SS conditions. This indicates impor-
tant context-dependent effects due to genotype 3

environment interaction. Estimates of marker effects
for GY-WW and GY-SS are provided in Table S3.
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Effect of 1,148 SNP markers in six trait-environment combinations for the MAIZE FLOWERING DATA 
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Effect of 1,135 SNP markers in two environments (SS and WW) for the MAIZE GRAIN YIELD DATA 
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